Nanotechnology and
Energy Harvesting from Radioisotopes

Larry L. Gadeken, BetaBatt

MEPTEC 9th Annual MEMS Symposium
19 May 2011
What are nuclear batteries, anyway?

There have been more than 50 years of development efforts to harvest electrical energy from radioactive isotopes. This talk will provide the basic concepts that must be considered when building a so-called nuclear battery. Some developments of the last century will be mentioned.

There has been a resurgence of interest in the first decade of the 21st century. Over $50 million in mostly government funds has been spent. However, the goal of commercializing a suitable technology has yet to be achieved.

It appears that carefully applying nanotechnology to maximize the energy obtained from direct conversion devices will lead to the first commercially successful micro-power sources. Some of the issues that must be resolved to achieve this accomplishment will be discussed.

The ultimate goal of obtaining a non-trivial fraction of the nation’s electrical power needs from radioactive waste lies some decades in the future.

Acknowledgement: Discussions with and materials from Professor James P. Blanchard of the University of Wisconsin at Madison
What is …

- Energy Harvesting
- Basic Nuclear Concepts
- Current Micro-/Nano-Technology Developments
- Potential Nanotechnology Solutions
- Future Outlook
Energy Harvesting Technologies
What is a Nuclear Battery?

- Convert energy of radioactive decay into electricity
- Options:
 - Direct charge collection
 - Indirect (convert to light for photovoltaic)
 - Betavoltaic
 - Thermoelectric
 - Thermionic
 - Thermophotovoltaic
Radioisotope Types

- **Alpha emitters** –
 - release energetic He nuclei – (4-6 MeV/particle)

- **Beta emitters** –
 - emit electrons or positrons (and neutrinos) –
 - (10s–100s keV with characteristic energy spectra)

- **Gamma emitters** –
 - Nucleus emits very energetic photons
 - (electromagnetic ‘rays’ – highly penetrating)

Note: X-rays are photons emitted by very excited atoms.
Isotope Selection

- **Type of radiation**
 - Alpha (α)
 - Beta (β)

- **Half-Life**
 - Long - Long battery life (238-Pu: 0.6 W/g, $T_{1/2}=86$ yr)
 - Short - Higher power density (210-Po: 137 W/g, $T_{1/2}=4$ mos)

- **Cost**
 - Design for particle range, displacement damage
 - Avoid gamma rays. Reduce Brehmstrahlung (safety)
 - Watch out for (α, n) reactions
Radioisotopes and Decay

Isotope Oversight

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Average energy (KeV)</th>
<th>Half life (year)</th>
<th>Specific activity (Ci/g)</th>
<th>Specific Power (W/g)</th>
<th>Power Density (W/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-Ni</td>
<td>17</td>
<td>100</td>
<td>57</td>
<td>0.0067</td>
<td>0.056</td>
</tr>
<tr>
<td>3-H</td>
<td>5.7</td>
<td>12</td>
<td>9700</td>
<td>0.33</td>
<td>0.0000083</td>
</tr>
<tr>
<td>90-Sr/90-Y</td>
<td>200/930</td>
<td>29/2 d</td>
<td>140</td>
<td>0.98</td>
<td>2.5</td>
</tr>
<tr>
<td>210-Po</td>
<td>5300</td>
<td>0.38</td>
<td>4500</td>
<td>140</td>
<td>1300</td>
</tr>
<tr>
<td>238-Pu</td>
<td>5500</td>
<td>88</td>
<td>17</td>
<td>0.56</td>
<td>11</td>
</tr>
<tr>
<td>244-Cm</td>
<td>5810</td>
<td>18</td>
<td>81</td>
<td>2.8</td>
<td>38</td>
</tr>
</tbody>
</table>

Key Take Away: Average range for α and β particles is 1-10 µm.
- Consider 1 mg for power source

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy Content (mW-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Battery (Li-ion)</td>
<td>0.3</td>
</tr>
<tr>
<td>Fuel Cell (methanol, 50%)</td>
<td>3</td>
</tr>
<tr>
<td>210-Po (5% - 4 mos) →α</td>
<td>3000</td>
</tr>
<tr>
<td>3-H (5% - 4 years) →β</td>
<td>500</td>
</tr>
</tbody>
</table>
Ragonè Plot for Batteries and Betavoltaics

Specific Energy (W-hr/kg)

Specific Power (W/kg)

Battery & Capacitor Data from http://berc.lbl.gov/venkat/Ragone-construction.pps
Radioisotope Thermoelectric Generator

- Used in many NASA missions
- Use ceramic loaded with Pu-238 for heating
- Thermoelectric power generation

- Fuel: 2.7 kg, 133 kCi
- Power: 276 W
- Power (11 years): 216 W
- Total Weight: 56 kg
- Lifetime: over 20 years
- Dimensions: D=42 cm, L=114 cm
Pacemakers (circa 1970)

- 3 Ci Pu-238
- ~3 ounces, ~3 inches
- <mW power levels
- 100 mrem/y to patient
- Since supplanted by Li batteries (~7 year life)
- Regulators nervous about tracking Pu
- Thermoelectric (some betacell concepts)

http://www.naspe.org/library/electricity_and_the_heart/
- Initial gap \(d_0\): 33 \(\mu\)m
- Period: 6 min. 8 sec.
- Residual charges: \(2.3 \times 10^{-11}\)C
- Peak force \(kd_0\): 10.1 \(\mu\)N
- Assumed Collection efficiency \(\alpha\): 10%
Betavoltaic Prototypes

- First type: planar Si pn-diode with electroplated 63Ni

 - DIP package
 - Leads
 - Glass
 - Electroplated PN-diode
 - Current vs Voltage graph

 Nanopower (0.04~0.24nW) - No performance degradation after 1 year

- Second type: inverted pyramid array Si pn-diode

 - Area magnification: 1.85 / - 0.32nW (128mV/2.86nA)
 - Efficiency: 0.03~0.1%
 - ~10 times > micromachined RTG

<table>
<thead>
<tr>
<th>I_p</th>
<th>V_o</th>
<th>P_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71nA</td>
<td>64mW</td>
<td>0.04nW</td>
</tr>
<tr>
<td>2.41nA</td>
<td>115mV</td>
<td>0.24nW</td>
</tr>
</tbody>
</table>

63NiCl/HCl solution (8µCi/µl)
Continuous Charger Technology

STORAGE — Thin-film rechargeable Lithium battery

CHARGER — Tritiated 3D Silicon Diodes

CASE — Safely encapsulate active components

The BetaBattery™ – A Long-Life, Self-Recharging Battery
Self-Recharging BetaBattery™

• Ultra long-life battery pack with built-in charger
 – Low power applications (<10V, <100μA, <1000 μW)
 – Flexible duty cycle (e.g., 4 mA for 1 sec. every 3 min.)

• Enabling platform technology
 – Perform extremely high value tasks
 – Importance great compared to power cost

• Proven and proprietary IP
 – Own basic patents
 – Developed through SBIR grants from NSF
 – Sponsored university research was licensed
Prototype BetaBattery Fabrication

BetaBattery Fabrication Steps
Assembly Procedure
Maximizing Efficiency

- **Cost**
 - Radioisotopes are very expensive
 - Want to maximize energy conversion

- **Geometry**
 - Locate decaying nuclei adjacent to converter
 - 3D configuration
 - Minimize volume of inactive materials
 - Converter dimensions commensurate with range

- **Flexible source manipulation capability**
Thin, Flexible Semiconductors

- For low energy beta emitters, source layers must be thin (sub-micron)
- Range of particles in semiconductor is also a few microns at most
- Hence, thin semiconductors are an advantage
- Multi-layer devices can offer good power density with good efficiency
- Silicon carbide, etc.
 - Wider bandgap will produce greater conversion efficiencies
 - Simulations indicate as much as 25% possible
Tritiated Energy Source

Tritiated Butyl Rubber Molecule

- Synthesis procedure can be ‘tuned’
 - Polymer can be solid or liquid
 - Liquid can be solidified by ‘cross-linking’
- Enables flexible device geometry
 - Maximize delivery of energy to converter
 - ‘Harvest’ most tritium decay energy
- Microfluidic infiltration into converter
Nanotechnology Potential

- **Converter**
 - Nano particle diodes, carbon nanotube diodes
 - Nano printing techniques for device fabrication
 - Self assembly using micro- or nano-fluidics

- **Graphene (or other 2D film)**
 - Usage as electrode

- **Energy Source**
 - Continuous production in film format

- **Substrate Development**
 - Film transfer and release
Device Fabrication

- Manufacturing Issues
 - Macro-scale devices from nano-scale components
 - Cost-effective means of energy source preparation
 - Efficient methods of integrating energy source and converter device and film assembly procedures

- Radioactive Materials Handling
 - Minimize waste generated
 - Minimize manipulation of radioactive materials
 - Maximize safety for personnel, users and public
Potential Markets

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government & Military</td>
<td>Anti-Tamper and Security, Sensors and Detectors, Health Monitoring of “Smart” Electronics, Covert Operations and Intelligence</td>
</tr>
<tr>
<td>Human Health</td>
<td>Cardiac Rhythm Management (Pacemakers) Micro stimulators and Drug delivery, etc.</td>
</tr>
<tr>
<td>Subsea</td>
<td>Valves and Actuators Sensors and Controls Telemetry</td>
</tr>
<tr>
<td>Subsurface</td>
<td>Real-Time Measurements 4D Seismic</td>
</tr>
<tr>
<td>Outer Space</td>
<td>Space Vehicles, Satellites</td>
</tr>
<tr>
<td>Micro-Electronics</td>
<td>Microelectronic Mechanical Systems (MEMS) Self-Powered Electronic Circuitry</td>
</tr>
<tr>
<td>Communications/Sensors</td>
<td>RFID Tags Implanted Microcircuits</td>
</tr>
</tbody>
</table>
Market Applications
- Justify cost and risk of using radioisotope fuels
- Advantage is very long life

Power Delivery
- Prototypes now: 10s – 100s nanoWatts/device
- Production ‘soon’: 200 – 2000 microWatts/cm³

Nanotechnology will play a role

Success
- Requires significant research and engineering development supported by adequate funding
Fukushima Daiichi
Close the Nuclear Fuel Cycle

Support Japan’s Recovery